On the nullity of graphs with pendant trees
نویسندگان
چکیده
منابع مشابه
On the nullity of line graphs of trees
The spectrum of a graph G is the set of eigenvalues of the 0–1 adjacency matrix of G. The nullity of a graph is the number of zeros in its spectrum. It is shown that the nullity of the line graph of a tree is at most one. c © 2001 Elsevier Science B.V. All rights reserved.
متن کاملOn the nullity of graphs
The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. It is known that η(G) ≤ n − 2 if G is a simple graph on n vertices and G is not isomorphic to nK1. In this paper, we characterize the extremal graphs attaining the upper bound n− 2 and the second upper bound n− 3. The maximum nullity of simple graphs with n vertices and e edges, M(n, e), is al...
متن کاملIntegral trees with given nullity
A graph is called integral if all eigenvalues of its adjacency matrix consist entirely of integers. We prove that for a given nullity more than 1, there are only finitely many integral trees. It is also shown that integral trees with nullity 2 and 3 are unique.
متن کاملEla on the Nullity of Graphs
The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. It is known that η(G) ≤ n − 2 if G is a simple graph on n vertices and G is not isomorphic to nK1. In this paper, we characterize the extremal graphs attaining the upper bound n− 2 and the second upper bound n− 3. The maximum nullity of simple graphs with n vertices and e edges, M(n, e), is al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2010
ISSN: 0024-3795
DOI: 10.1016/j.laa.2010.05.016